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Abstract. We study Compton scattering on the ground state of the hydrogen atom in the presence of an
intense low-frequency electric field (the laser) of arbitrary polarization, for incident and scattered photons
of energies around 15 keV. The adopted formalism is the nonrelativistic one developed by Voitkiv et al.
[J. Phys. B: At. Mol. Opt. Phys. 36, 1907 (2003)] and applied by them for a circularly polarized laser.
We explore the spectrum and the electron energy distribution in their dependence on the incident photon
energy or electric field intensity, for different polarizations.

PACS. 34.50.Rk Laser-modified scattering and reactions – 32.80.Wr Other multiphoton processes

1 Introduction

The progress in the laser performances in terms of in-
tensity, spectral domain and pulse duration has increased
the interest in the theoretical studies of matter interaction
with intense external electromagnetic fields. Some of the
most studied phenomena, like above-threshold ionization
and high-order-harmonic generation, are new and were
discovered in experiments using intense lasers. Another
category of studied phenomena includes basic atomic
processes, like electron-atom scattering, photoionization,
bremsstrahlung and X-ray scattering, as modified by the
presence of the laser.

We report here some new results concerning the case
of Compton effect on an electron in the ground state of a
hydrogenic atom with nuclear charge Z. Recent calcula-
tions [1,2] performed for the hydrogen atom have revealed
a substantial influence of a low-frequency laser field on the
K-shell Compton scattering, for laser intensities of the or-
der 10−5 au.

In the usual Compton scattering on a bound electron,
an incident photon with momentum κ1 and polarization
vector s1 is inelastically scattered by the electron. As a
result, a photon with the attributes κ2 and s2 is emitted
and the electron leaves the atom with an asymptotic mo-
mentum p. For a review of the theoretical description of
the process see the paper of Bergstrom and Pratt [3]. If
the atomic nucleus is fixed, energy is conserved but not
the momentum. The usual description of the process con-
cerns low intensity incident radiation, so it is based on per-
turbation theory. In a nonrelativistic treatment, justified
for incident photon energy much lower than the electron
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rest energy, working in the velocity gauge, the transition
amplitude is the sum of three terms. A first term, corre-
sponding to the so-called “sea-gull” diagram, is the dom-
inant one, if the incident photon energy is not too close
to the ionization threshold. If the scattered photon energy
is very low, an infrared divergence is present in another
term of the amplitude. In the particular case of a hydro-
genic atom, it is possible to derive analytic expressions for
all three terms in the transition amplitude; this was done
many years ago for both K [4] and L-subshells [5], and
later for any ns subshell [6].

In the literature, more attention was given to radia-
tion scattering on free electrons than on bound ones, and
particularly to induced Compton scattering, when the elec-
tron interacts only with one external monochromatic field
(the laser), so the scattered radiation frequency spectrum
is directly connected with the laser frequency. Both rel-
ativistic and nonrelativistic calculations are available in
this case (for a recent calculation and references see the
paper of Panek et al. [7]).

In laser assisted Compton scattering the electron inter-
acts with two external field, one, of frequency ω1, has low
intensity and the other (the laser) is intense. The laser fre-
quency ωL is orders of magnitude lower than the frequency
ω1. In this case, although hundreds of laser photons are
exchanged, the scattered radiation spectrum is dominated
by frequencies in the range of ω1.

Earlier considerations on laser assisted Compton scat-
tering are connected with the papers of Jain et Tsoar [8]
and Ehlotzy [9]. In the first part of their paper Jain and
Tsoar consider the case of laser assisted X-ray scatter-
ing on a K-shell electron of a hydrogenic atom. They
use the impulse approximation, a usual approximation for
Compton scattering in the absence of the field [10], and
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neglect the modification of the ground state, except the
energy shift. Ehlotzky’s analysis is based on the contri-
bution of the sea-gull term and includes laser effects on
initial and final states using for both superpositions of
Volkov states with the same momentum distribution as in
the absence of the laser field.

New analytic and numerical results have been pre-
sented recently by Voitkiv et al. [1,2] for an electron bound
in the K-shell of a hydrogen atom interacting with a cir-
cularly polarized laser. As in the work presented here, we
have adopted Voitkiv et al. approach (designed in the fol-
lowing as VGU), details on it are given in Section 2. The
mentioned authors have studied the fully differential spec-
tra of emitted electrons and scattered photons in coinci-
dence, the energy spectrum of the electrons for the case
in which the scattered photons are not detected and the
energy spectrum of the scattered photons for the case in
which the electrons are not recorded. They have found
that the dressing of the ground state plays an important
role in the scattering pattern. All the results presented by
Voitkiv et al. correspond to a photon energy �ω1 = 750 au
≈ 20.4 keV.

As in the absence of the laser field, the sea-gull term
vanishes in the dipole approximation, the retardation ef-
fects are included for the incident and scattered photon.
Their energies should not be too small, for two reasons:
(i) near the K-shell threshold the other two terms of the
amplitudes do contribute, (ii) at low scattered frequency
the infrared divergence shows up, in a term not included
here.

After describing the formalism, we present at the end
of Section 2 the expression (3) of the most differential
cross-section for laser assisted Compton scattering in the
case of arbitrary laser polarization. Some more details and
further approximations are given in Section 3.

In Section 4 we present numerical results for hydrogen.
We focus on the dependence on polarization for both the
fully differential electron spectrum and the electron energy
distribution. Particularly, we compare linear and circular
polarization effects. We investigate several aspects not dis-
cussed by Voitkiv et al. [1,2], such as the dependence on
the initial photon frequency and laser electric field inten-
sity of the electron energy distribution.

In the analytic expressions we use SI units. The elec-
tron mass and charge are denoted by me and e (e < 0),
respectively. The numerical results are discussed using
atomic units for the parameters.

2 The theoretical framework

The approximation scheme developed by VGU [1] is a
nonrelativistic treatment of the electron interaction with
the electromagnetic radiation, which has a component de-
scribed as a quantized field, responsible for the absorption
of the incident photon and the spontaneous emission of the
Compton photon, and a component described classically,
which is brought by the laser and that modifies the fea-
tures of the Compton effect. Retardation is included for
the quantized field, but not for the laser. The Hamiltonian

is written in the velocity gauge and the electron interac-
tion with the quantized electromagnetic field, described
by a potential vector operator Â, is treated as a pertur-
bation. The transition amplitude is of second order in this
operator. Only the contribution of the sea-gull term (the
Â2 term) is included.

In order to keep a connection with the previous work
in [1], we refer to the same particular reference frame, with
units vectors ej, j = 1, 2, 3 in a special relation with the
laser field: e2 is along the propagation direction and the
other two vectors along the principal axes of the ellipse
described by the electric field. We use the vector potential

AL(t) = A0[cos(ξ/2) cos(ωLt)e3 − sin(ξ/2) sin(ωLt)e1],
(1)

which means that the polarization is described by the pa-
rameter ξ with 0 ≤ ξ ≤ π. The amplitude of the electric
field is F0 = ωLA0. We have to remark that, due to a dif-
ferent factor in the expression of the vector potential, a
calculation of ours for a given F0 should agree with a cal-
culation of [1] performed for F0

√
2. This refers, of course,

to the circularly polarized case, the only case considered
in [1].

We adopt the same approximations as Voitkiv et al. for
the dressed states of the bound and of the final electron,
i.e., in the velocity gauge, the laser effect on the ground
state is reduced to the multiplication by exp[ ie

�
AL(t) ·r] of

the bound state wavefunction and the final state is taken
as a Coulomb−Volkov state. Arguments in favor of the
approximation used for the ground state were presented
by Voitkiv and Ullrich [11]. The Coulomb-Volkov function
is obtained from the nonrelativistic Volkov solution by re-
placing the plane wave by a Coulomb scattering solution,
denoted here by |p−〉. The Coulomb-Volkov approxima-
tion was introduced by Jain and Tsoar [8]. Not long time
after, Cavaliere et al. [12] have established a condition
for its validity. In the appendix of their paper the equa-
tion satisfied by the Coulomb-Volkov function is compared
with the exact time-dependent Schrödinger equation. The
conclusion is that the inequality

ζ ≡ F0

ωLp
� 1 (2)

has to be satisfied. A similar type of justification was given
by Banerji and Mittleman [13]. A qualitative argument
concerning the role of the electron energy comes from the
simple remark that at large electron energies the Coulomb
wavefunction becomes a plane wave and the Coulomb-
Volkov wavefunction a Volkov solution.

The Coulomb-Volkov function is related to another
approximate wave function introduced by Kroll and
Watson [14] and used in low frequency calculations. This
wave function was analyzed by Kornev and Zon [15], using
as a test a relation, known as Siegert theorem, applied to
one-photon free-free transitions. The calculation was done
at low electron energies. For more details see [15]1.

1 We owe the information about the calculation of Kornev
and Zon to one of the referees of our paper.



O. Budriga and V. Florescu: Laser polarization effects on K-shell Compton scattering 207

The Volkov factor depends on the laser polarization
and this leads to more complicate results if the polariza-
tion is not circular than otherwise. We give here the final
results.

The most differential cross-section has the same struc-
ture as in the circularly polarized laser case (see [1],
Eq. (14)),

d4σ = σTh
ω2

ω1
�

∞∑

n=−∞
|Mfi;n|2δ(Ee + UP + n�ωL

− E1 + �ω2 − �ω1)dEedΩedω2dΩ2, (3)

with σTh the Thomson cross-section. By Ee was denoted
the asymptotic (kinetic) energy of the electron, by UP

the ponderomotive potential (UP = e2F 2
0 /4meω

2
L) and by

E1 < 0 the bound electron energy. The expression of Mfi;n

depends on the laser polarization. In the general case its
expression is

Mfi;n = 〈p − |Bn(a, b; ∆)ei(κ1−κ2)·r|E1〉, (4)

with Bn the generalized Bessel function, as defined in [16].
The continuum energy eigenstate |p−〉 is normalized in
the energy and solid angle scales.

The exact expressions of the parameters a and ∆ of
the Bn function result from

a cos∆ =
α0

�
[e3 · p cos(ξ/2) + meωLe1 · r sin(ξ/2)],

a sin ∆ =
α0

�
[e1 · p sin(ξ/2) − meωLe3 · r cos(ξ/2)], (5)

while
b =

UP

2�ωL
cos ξ. (6)

We have used2 the notation α0 for the amplitude of the
classical quiver motion of the electron in the external elec-
tric field of frequency ωL, and linear polarization

α0 = − eF0

meω2
L

. (7)

For the case of circularly polarized light (ξ = π/2), the
parameter b vanishes and the generalized Bessel function
becomes, up to a phase factor, the ordinary Bessel function
Jn(a). As said before, this is the only case studied in the
two papers of Voitkiv et al.

All parameters b, a and ∆ depend on the laser parame-
ters, but a and ∆ also depend on the electron momentum.
The unpleasant feature is the dependence of the last two
parameters on the integration variable r in (4).

3 Further details on the calculation

Based on the series expansion of the generalized Bessel
functions (Ref. [16], Eq. (36)), the general expression (4)

2 It is useful to say that Voitkiv et al. denote by α0 a different
quantity (see [1], Eq. (11)).

of Mfi;n becomes a series whose terms are products of a
Bessel function and a complicate matrix-element including
another Bessel function,

Mfi;n =
∞∑

m=−∞
Jm(b)Snm,

Snm ≡ 〈p − |Jn+2m(a) ei[(n+2m)∆+(κ1−κ2)·r]|E1〉. (8)

We emphasize that the expression of Mfi;n contains only
one matrix-element in the case of circular polarization,
when b = 0, while for other polarization cases one en-
counters a series of such matrix-elements.

As in the previously studied case, the atomic matrix el-
ements are complicated by the r-dependence of the param-
eters a and ∆. In the first paper of Voitkiv et al. one finds
the justification for adopting approximate r-independent
expressions for a and ∆; the effects of the approximation,
studied in their second paper, were found, with some ex-
ceptions, not to be essential. So, we adopt the same type of
approximation, replacing a by the simpler r-independent
expression, denoted by a(0),

a(0) =
α0

�
[(e1 ·p)2 sin2(ξ/2) + (e3 ·p)2 cos2(ξ/2)]1/2, (9)

and ∆ by
∆ = ∆(0) + ∆(1). (10)

The value of ∆(0) is extracted from

a(0) cos∆(0) =
α0

�
e3 · p cos(ξ/2),

a(0) sin ∆(0) =
α0

�
e1 · p sin(ξ/2), (11)

and ∆1 is r-dependent and it is proportional with the laser
photon frequency

∆(1) ≈ −q · r,

q ≡ meωL
(e1 · p) sin2(ξ/2)e1 + (e3 · p) cos2(ξ/2)e3

(e1 · p)2 sin2(ξ/2) + (e3 · p)2 cos2(ξ/2)
.

(12)

With these approximations, the atomic matrix elements
become

Snm ≈ S(0)
nm = Jn+2m

(
a(0)

)
ei(n+2m)∆(0)

Onm,

Onm = 〈p − |ei[κ1−κ2−(n+2m)q]·r|E1〉. (13)

It was very useful for the numerical calculations to no-
tice that the matrix elements Onm have simple analytic
expressions (see, for instance, Eq. (23) of [4]). With the
notations

λ = αZmec, η =
λ

p
,

qnm ≡ κ1 − κ2 − (n + 2m)q, (14)
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where α is the fine structure constant and c the velocity
of light, the matrix element Onm has the expression

Onm = N0Z1Z2Z3,

Z1 = q2
nm − (iη + 1)p · qnm, (15)

Z2 =
[
q2

nm + (λ − ip)2
]−iη−1

,

Z3 =
[
(qnm − p)2 + λ2

]iη−2
, (16)

|N0|2 =
32
π

λ5me
η exp(πη)
sinh(πη)

p. (17)

Finally, we have to mention that for forward electron emis-
sion and linear polarization perpendicular to the electron
momentum (ξ = 180◦) the adopted approximation fails
because the r-independent terms kept in (9) and (11)
vanish.

4 Numerical results

We present only results for perpendicular laser and inci-
dent photon directions of propagation. Accordingly to our
initial choice the reference frame has the y-axis along the
laser propagation direction. The z-axis was taken along
the incident photon direction. The results presented in
the figures refer to atomic hydrogen.

We have studied two quantities: (i) the most differen-
tial cross-section corresponding to the detection in coinci-
dence of the scattered photon of given frequency and direc-
tion with the electron direction and (ii) the electron energy
distribution at fixed electron direction, for any scattered
photon attributes. As mentioned before, the numerical cal-
culation is simpler in the case of circular laser polarization
because in this case only the matrix elements On0 [see
definition (13)] appear. We have developed codes for the
calculation of the cross-sections for arbitrary polarization
of the laser. Having in mind the remark at the end of Sec-
tion 3 about the validity of the analytic expressions we
use, we do not present results for ξ > 150◦.

Due the monochromaticity of the external field, the
fully differential electron spectrum is a succession of lines.
So, at given scattered frequency, the energy of the elec-
tron can have the discrete values allowed by the δ-function
in (3),

En
e = �ω1 − �ω2 + E1 − n�ωL − UP, (18)

corresponding to the absorption (n < 0) or emission of
laser photons (n > 0). The number of emitted photons
is limited by the condition En

e > 0. The quantity investi-
gated in this case is

σ3(Ee) = σTh
ω2

ω1
|Mfi;n|2 (19)

for different values of the energy Ee, as given by (18). The
result is a figure as Figures 1 and 2 here, of the type of
Figure 1 of [1]. We shall call the content of such a figure
the electron spectrum.
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Fig. 1. The electron spectrum (19) for 500 au incident photon
energy, backward scattered photon with 475 au energy and for-
ward emitted electron. The laser parameters are F0 = 0.005 au
and ωL = 0.0043 au. The laser polarization ellipticity ξ changes
from a panel to another.
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Fig. 2. Same as Figure 1, but for other degrees of laser po-
larization.

In the absence of the laser field the electron spectrum
reduces to a single line. The intensity of this unique line is
maximum for backward photon scattering, forward elec-
tron emission and a scattered frequency close to the free-
electron Compton frequency. In the presence of the exter-
nal electromagnetic field the spectrum is extremely rich,
hundreds of lines are present in Figures 1 and 2.

We have studied the change of the spectrum with some
of the parameters it depends on. We summarize our obser-
vations, that show a similar qualitative behaviour as that
of the single line present in the absence of the field.

(1) For electron emitted along the incident photon direc-
tion (θe = 0) the spectrum does not depend on the
azimuthal angle φ2 of the scattered photon. The con-
clusion is based on the analytic expression of the cross-
section.



O. Budriga and V. Florescu: Laser polarization effects on K-shell Compton scattering 209

10 15 20 25 30 35 40
E

e
 (in au)

0

50

100

150

200

250

300

350

σ 2(E
e) 

(i
n 

10
-2

8  c
m

2 /a
u·

st
r)

145°

120°

90°

45°

0°

Fig. 3. The cross-section (20) for different values of the ellip-
ticity ξ, at 500 au incident photon energy and forward emitted
electron, laser parameters F0 = 0.005 au and ωL = 0.0043 au.
The dashed curve corresponds to the absence of the laser.

(2) At a given initial frequency ω1 the lines have the
largest intensities for the Compton frequency of the
free electron.

(3) The effect of departure from forward electron scatter-
ing or from backward photon scattering is a drastic
reduction of the spectrum.

The spectra shown in Figures 1 and 2 correspond to an
incident photon frequency of ω1 = 500 au, the frequency
of the laser ωL = 0.0043 au (the fundamental frequency of
the CO2 laser) and the laser electric field F0 = 0.005 au.
The other parameters (scattered photon frequency and
direction, emitted electron direction) are those favorable
to the Compton effect in the absence of the field, as de-
scribed before. The laser polarization, characterized by
the parameter ξ in (1), is changed from a panel to an-
other. The Compton frequency for backward scattering is
approximately 475 au, so the position of the line in the ab-
sence of the field would be at an electron energy of 24.8 au.
Its intensity, not shown in these figures, is two, sometimes
three orders of magnitude higher that the largest inten-
sity in the laser modified spectrum. As shown in the fig-
ures, the spectrum is not symmetric with respect to the
Compton frequency. The absorption of laser photons is
favored for values of the ellipticity parameter ξ smaller
than 90◦. For circular polarization the spectrum is almost
symmetric. The extension of the emitted electron energy
range is reduced with the increase of the ellipticity: it is
reduced from approximately 18 au for linear polarization
to 4 au at ξ = 150◦.

If the scattered photon is not detected, the integration
of its attributes in equation (3) leads to the cross-section

σ2(Ee) =
d2σ

dΩedEe
=

∫
dΩ2

n0∑

n=−∞
|Mfi;n|2, (20)

where n0 denotes the maximum number of laser photons
that can be emitted. The cross-section σ2(Ee) will be
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Fig. 4. The cross-section (20) for different incident photon
energies, forward emitted electron and laser parameters F0 =
0.005 au, ωL = 0.0043 au: (a) linear polarization; (b) circular
polarization.

named the electron energy distribution. Besides the laser
parameters, the electron energy distribution depends on
the incident frequency and the electron direction.

The following figures (Figs. 3–5) are of the type of
Figure 2 of [1], i.e., they represent the cross-section σ2 as
function of the final electron energy Ee. They correspond
all to an incoming photon and emitted electron along the
z−axis of the reference system.

As for F0 = 0.005 au, ωL = 0.0043 au and Ee = 10 au
one has already ζ = 0.35, the electron energy range was
restricted to Ee > 10 au. Nevertheless, in Figure 5 some
higher, but smaller than 1, values of ζ are met at the in-
tensity F0 = 0.01. The reason to display this graph is to
supply a term of comparison for more adequate calcula-
tions at higher laser intensities.

Figure 3 illustrates the dependence of the electron en-
ergy distribution on the laser polarization. The other laser
parameters ωL and F0 are the same as in Figure 1, so
are the scattered photon and emitted electron attributes.
The dashed curve corresponds to the distribution in the
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Fig. 5. The cross-section (20) for 500 au for different values
of the laser electric field intensity F0, laser frequency ωL =
0.0043 au and forward emitted electron: (a) linear polarization;
(b) circular polarization. The dashed curve corresponds to the
absence of the laser.

absence of the laser field. The laser field influence is re-
duced by the increase of the ellipticity parameter ξ.

Results valid in the case of laser linear polarization
(ξ = 0) along the incident photon direction (Figs. 4a
and 5a) are compared with those for circular polariza-
tion (Figs. 4b and 5b). These results concern the depen-
dency on the incident photon frequency which differs from
a curve to another in Figures 4a and 4b and the depen-
dence on the electric field intensity in Figures 5a and 5b,
which is now changed from a curve to another.

As seen in Figures 4a and 4b, with the increase of
the incident photon energy in the investigated range
(350–750 au), the electron distribution changes its shape,
in a similar way in the linear and circularly polarized laser
field.

At low laser intensities the electron distribution keeps
the shape it has in the absence of the laser field (the dashed
curve), but at larger intensities it is deformed. The effect
are more pronounced for linear polarization.

5 Conclusions

We have studied the influence of a low-frequency laser po-
larization on the sea-gull term in the amplitude of the
Compton scattering on the electron in the ground state of
a hydrogenic atom, using the approximation introduced
by Voitkiv et al. and used by them in the circularly polar-
ized case. We have found that the polarization degree does
affect in a noticeable way the values of the cross-sections.

Further studies have to be concerned with the con-
tribution of the other terms in the Compton scattering
amplitude, starting from what is known in the absence of
the field [17].
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